Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Pancreatology ; 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38514359

RESUMEN

BACKGROUND/OBJECTIVES: Perineural invasion (PNI), classified according to its presence or absence in tumor specimens, is recognized as a poor prognostic factor in pancreatic ductal adenocarcinoma (PDAC) patients. Herein, we identified five histological features of PNI and investigated their impact on survival outcomes of PDAC resected patients. METHODS: Five histopathological features of PNI (diameter, number, site, sheath involvement, and mitotic figures within perineural invasion) were combined in an additional final score (ranging from 0 to 8), and clinical data of PDAC patients were retrospectively analyzed. PNI + patients were stratified in two categories according to the median score value (<6 and ≥ 6, respectively). Impact of PNI on disease-free survival (DFS) and overall survival (OS) were analyzed. RESULTS: Forty-five patients were enrolled, of whom 34 with PNI (PNI+) and 11 without PNI (PNI-). The DFS was 11 months vs. not reached (NR) (p = 0.258), while the OS was 19 months vs. NR (p = 0.040) in PNI+ and PNI- patients, respectively. A ≥6 PNI was identified as an independent predictor of worse OS vs. <6 PNI + patients (29 vs. 11 months, p < 0.001) and <6 PNI+ and PNI- patients (43 vs. 11 months, p < 0.001). PNI ≥6 was an independent negative prognostic factor of DFS vs. <6 PNI+ and PNI- patients (13 vs. 6 months, p = 0.022). CONCLUSIONS: We report a PNI scoring system that stratifies surgically-treated PDAC patients in a graded manner that correlates with patient prognosis better than the current dichotomous (presence/absence) definition. However, further and larger studies are needed to support this PNI scoring system.

2.
Lab Invest ; 103(12): 100259, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37839638

RESUMEN

Tumor microenvironment plays a crucial role in primary cutaneous melanoma (CM) progression. Although the role of tumor-infiltrating lymphocyte (TIL) density has been known for a long time, its spatial distribution and impact with or without tumor-associated macrophages (TAMs) remain controversial. Herein, we investigated spatial proximity between tumor cells and immune cells in 113 primary CM and its correlation with disease-free (DFS) and overall survival (OS). The study cohort included clinical stage II (n = 79) and stage III (n = 34) primary CM with a Breslow thickness of >2 mm (with a median age of 64 years, including 72 men and 41 women). In univariate models, patients with SOX10+ melanoma cells with high proximity to CD8+ TILs in a 20 µm radius showed longer DFS (hazard ratio [HR], 0.58; 95% CI, 0.36-0.93; P = .025) and OS (HR, 0.55; 95% CI, 0.32-0.92; P = .023). Furthermore, at multivariate combined analysis, patients with SOX10+ melanoma cells with high proximity to CD8+ TILs or low proximity to CD163+ TAMs in a 20 µm radius showed an increased OS (aHR, 0.37; 95% CI, 0.14-0.96; P = .04) compared with melanoma patients with low proximity to CD8+ TILs or high proximity to CD163+ TAMs. In a subgroup analysis including 92 patients, a significant negative impact on DFS (aHR, 4.49; 95% CI, 1.73-11.64; P = .002) and OS (aHR, 3.97; 95% CI, 1.37-11.49; P = .01) was observed in sentinel lymph node (SLN)-negative patients with a high proximity of CD163+ TAMs to CD8+ TILs. These findings could help identify high-risk patients in the context of thick melanoma and a negative SLN. Our study suggests the importance of quantifying not only the density of immune cells but also the individual and combined relative spatial distributions of tumor cells and immune cells for clinical outcomes in SLN-negative primary CM patients.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Masculino , Humanos , Femenino , Persona de Mediana Edad , Linfocitos Infiltrantes de Tumor , Pronóstico , Macrófagos/patología , Microambiente Tumoral
3.
Biomolecules ; 13(10)2023 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-37892239

RESUMEN

Ion channels play a crucial role in a wide range of biological processes, including cell cycle regulation and cancer progression. In particular, the transient receptor potential (TRP) family of channels has emerged as a promising therapeutic target due to its involvement in several stages of cancer development and dissemination. TRP channels are expressed in a large variety of cells and tissues, and by increasing cation intracellular concentration, they monitor mechanical, thermal, and chemical stimuli under physiological and pathological conditions. Some members of the TRP superfamily, namely vanilloid (TRPV), canonical (TRPC), melastatin (TRPM), and ankyrin (TRPA), have been investigated in different types of cancer, including breast, prostate, lung, and colorectal cancer. TRP channels are involved in processes such as cell proliferation, migration, invasion, angiogenesis, and drug resistance, all related to cancer progression. Some TRP channels have been mechanistically associated with the signaling of cancer pain. Understanding the cellular and molecular mechanisms by which TRP channels influence cancer provides new opportunities for the development of targeted therapeutic strategies. Selective inhibitors of TRP channels are under initial scrutiny in experimental animals as potential anti-cancer agents. In-depth knowledge of these channels and their regulatory mechanisms may lead to new therapeutic strategies for cancer treatment, providing new perspectives for the development of effective targeted therapies.


Asunto(s)
Neoplasias , Canales de Potencial de Receptor Transitorio , Masculino , Animales , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/metabolismo , Neoplasias/tratamiento farmacológico , Transducción de Señal , Proliferación Celular
4.
Am J Pathol ; 193(12): 2099-2110, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37734590

RESUMEN

The presence of tumor-infiltrating lymphocytes (TILs) is associated with a favorable prognosis of primary melanoma (PM). Recently, artificial intelligence (AI)-based approach in digital pathology was proposed for the standardized assessment of TILs on hematoxylin and eosin-stained whole slide images (WSIs). Herein, the study applied a new convolution neural network (CNN) analysis of PM WSIs to automatically assess the infiltration of TILs and extract a TIL score. A CNN was trained and validated in a retrospective cohort of 307 PMs including a training set (237 WSIs, 57,758 patches) and an independent testing set (70 WSIs, 29,533 patches). An AI-based TIL density index (AI-TIL) was identified after the classification of tumor patches by the presence or absence of TILs. The proposed CNN showed high performance in recognizing TILs in PM WSIs, showing 100% specificity and sensitivity on the testing set. The AI-based TIL index correlated with conventional TIL evaluation and clinical outcome. The AI-TIL index was an independent prognostic marker associated directly with a favorable prognosis. A fully automated and standardized AI-TIL appeared to be superior to conventional methods at differentiating the PM clinical outcome. Further studies are required to develop an easy-to-use tool to assist pathologists to assess TILs in the clinical evaluation of solid tumors.


Asunto(s)
Aprendizaje Profundo , Melanoma , Humanos , Estudios Retrospectivos , Linfocitos Infiltrantes de Tumor/patología , Inteligencia Artificial , Pronóstico , Melanoma/patología
5.
Cells ; 12(11)2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37296632

RESUMEN

Background: Transient receptor potential ankyrin 1 (TRPA1) activation is implicated in neuropathic pain-like symptoms. However, whether TRPA1 is solely implicated in pain-signaling or contributes to neuroinflammation in multiple sclerosis (MS) is unknown. Here, we evaluated the TRPA1 role in neuroinflammation underlying pain-like symptoms using two different models of MS. Methods: Using a myelin antigen, Trpa1+/+ or Trpa1-/- female mice developed relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE) (Quil A as adjuvant) or progressive experimental autoimmune encephalomyelitis (PMS)-EAE (complete Freund's adjuvant). The locomotor performance, clinical scores, mechanical/cold allodynia, and neuroinflammatory MS markers were evaluated. Results: Mechanical and cold allodynia detected in RR-EAE, or PMS-EAE Trpa1+/+ mice, were not observed in Trpa1-/- mice. The increased number of cells labeled for ionized calcium-binding adapter molecule 1 (Iba1) or glial fibrillary acidic protein (GFAP), two neuroinflammatory markers in the spinal cord observed in both RR-EAE or PMS-EAE Trpa1+/+ mice, was reduced in Trpa1-/- mice. By Olig2 marker and luxol fast blue staining, prevention of the demyelinating process in Trpa1-/- induced mice was also detected. Conclusions: Present results indicate that the proalgesic role of TRPA1 in EAE mouse models is primarily mediated by its ability to promote spinal neuroinflammation and further strengthen the channel inhibition to treat neuropathic pain in MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple , Neuralgia , Canales de Potencial de Receptor Transitorio , Femenino , Animales , Ratones , Esclerosis Múltiple/metabolismo , Encefalomielitis Autoinmune Experimental/metabolismo , Canal Catiónico TRPA1/metabolismo , Hiperalgesia/tratamiento farmacológico , Nocicepción , Canales de Potencial de Receptor Transitorio/metabolismo , Enfermedades Neuroinflamatorias , Médula Espinal/metabolismo , Neuralgia/tratamiento farmacológico
6.
Temperature (Austin) ; 10(1): 50-66, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37187829

RESUMEN

The transient receptor potential ankyrin 1 (TRPA1), a member of the TRP superfamily of channels, has a major role in different types of pain. TRPA1 is primarily localized to a subpopulation of primary sensory neurons of the trigeminal, vagal, and dorsal root ganglia. This subset of nociceptors produces and releases the neuropeptide substance P (SP) and calcitonin gene-related peptide (CGRP), which mediate neurogenic inflammation. TRPA1 is characterized by unique sensitivity for an unprecedented number of reactive byproducts of oxidative, nitrative, and carbonylic stress and to be activated by several chemically heterogenous, exogenous, and endogenous compounds. Recent preclinical evidence has revealed that expression of TRPA1 is not limited to neurons, but its functional role has been reported in central and peripheral glial cells. In particular, Schwann cell TRPA1 was recently implicated in sustaining mechanical and thermal (cold) hypersensitivity in mouse models of macrophage-dependent and macrophage-independent inflammatory, neuropathic, cancer, and migraine pain. Some analgesics and herbal medicines/natural products widely used for the acute treatment of pain and headache have shown some inhibitory action at TRPA1. A series of high affinity and selective TRPA1 antagonists have been developed and are currently being tested in phase I and phase II clinical trials for different diseases with a prominent pain component. Abbreviations: 4-HNE, 4-hydroxynonenal; ADH-2, alcohol dehydrogenase-2; AITC, allyl isothiocyanate; ANKTD, ankyrin-like protein with transmembrane domains protein 1; B2 receptor, bradykinin 2 receptor; CIPN, chemotherapeutic-induced peripheral neuropathy; CGRP, calcitonin gene related peptide; CRISPR, clustered regularly interspaced short palindromic repeats; CNS, central nervous system; COOH, carboxylic terminal; CpG, C-phosphate-G; DRG, dorsal root ganglia; EP, prostaglandins; GPCR, G-protein-coupled receptors; GTN, glyceryl trinitrate; MAPK, mitogen-activated protein kinase; M-CSF, macrophage-colony stimulating factor; NAPQI, N-Acetyl parabenzoquinone-imine; NGF, nerve growth factor; NH2, amino terminal; NKA, neurokinin A; NO, nitric oxide; NRS, numerical rating scale; PAR2, protease-activated receptor 2; PMA, periorbital mechanical allodynia; PLC, phospholipase C; PKC, protein kinase C; pSNL, partial sciatic nerve ligation; RCS, reactive carbonyl species; ROS, reactive oxygen species; RNS, nitrogen oxygen species; SP, substance P; TG, trigeminal ganglion; THC, Δ9-tetrahydrocannabinol; TrkA, neurotrophic receptor tyrosine kinase A; TRP, transient receptor potential; TRPC, TRP canonical; TRPM, TRP melastatin; TRPP, TRP polycystin; TRPM, TRP mucolipin; TRPA, TRP ankyrin; TRPV, TRP vanilloid; VG, vagal ganglion.

7.
J Biomed Sci ; 30(1): 28, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37101198

RESUMEN

BACKGROUND: Ingestion of alcoholic beverages is a known trigger of migraine attacks. However, whether and how ethanol exerts its pro-migraine action remains poorly known. Ethanol stimulates the transient receptor potential vanilloid 1 (TRPV1) channel, and its dehydrogenized metabolite, acetaldehyde, is a known TRP ankyrin 1 (TRPA1) agonist. METHODS: Periorbital mechanical allodynia following systemic ethanol and acetaldehyde was investigated in mice after TRPA1 and TRPV1 pharmacological antagonism and global genetic deletion. Mice with selective silencing of the receptor activated modifying protein 1 (RAMP1), a component of the calcitonin gene-related peptide (CGRP) receptor, in Schwann cells or TRPA1 in dorsal root ganglion (DRG) neurons or Schwann cells, were used after systemic ethanol and acetaldehyde. RESULTS: We show in mice that intragastric ethanol administration evokes a sustained periorbital mechanical allodynia that is attenuated by systemic or local alcohol dehydrogenase inhibition, and TRPA1, but not TRPV1, global deletion, thus indicating the implication of acetaldehyde. Systemic (intraperitoneal) acetaldehyde administration also evokes periorbital mechanical allodynia. Importantly, periorbital mechanical allodynia by both ethanol and acetaldehyde is abrogated by pretreatment with the CGRP receptor antagonist, olcegepant, and a selective silencing of RAMP1 in Schwann cells. Periorbital mechanical allodynia by ethanol and acetaldehyde is also attenuated by cyclic AMP, protein kinase A, and nitric oxide inhibition and pretreatment with an antioxidant. Moreover, selective genetic silencing of TRPA1 in Schwann cells or DRG neurons attenuated periorbital mechanical allodynia by ethanol or acetaldehyde. CONCLUSIONS: Results suggest that, in mice, periorbital mechanical allodynia, a response that mimics cutaneous allodynia reported during migraine attacks, is elicited by ethanol via the systemic production of acetaldehyde that, by releasing CGRP, engages the CGRP receptor in Schwann cells. The ensuing cascade of intracellular events results in a Schwann cell TRPA1-dependent oxidative stress generation that eventually targets neuronal TRPA1 to signal allodynia from the periorbital area.


Asunto(s)
Hiperalgesia , Trastornos Migrañosos , Ratones , Animales , Hiperalgesia/inducido químicamente , Hiperalgesia/metabolismo , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo , Etanol/toxicidad , Péptido Relacionado con Gen de Calcitonina/metabolismo , Ancirinas/metabolismo , Acetaldehído , Canal Catiónico TRPA1/genética , Canal Catiónico TRPA1/metabolismo , Células de Schwann/metabolismo , Ratones Endogámicos C57BL
8.
Brain Behav Immun ; 110: 348-364, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36940752

RESUMEN

Insulin growth factor-1 (IGF-1), an osteoclast-dependent osteolysis biomarker, contributes to metastatic bone cancer pain (MBCP), but the underlying mechanism is poorly understood. In mice, the femur metastasis caused by intramammary inoculation of breast cancer cells resulted in IGF-1 increase in femur and sciatic nerve, and IGF-1-dependent stimulus/non-stimulus-evoked pain-like behaviors. Adeno-associated virus-based shRNA selective silencing of IGF-1 receptor (IGF-1R) in Schwann cells, but not in dorsal root ganglion (DRG) neurons, attenuated pain-like behaviors. Intraplantar IGF-1 evoked acute nociception and mechanical/cold allodynia, which were reduced by selective IGF-1R silencing in DRG neurons and Schwann cells, respectively. Schwann cell IGF-1R signaling promoted an endothelial nitric oxide synthase-mediated transient receptor potential ankyrin 1 (TRPA1) activation and release of reactive oxygen species that, via macrophage-colony stimulating factor-dependent endoneurial macrophage expansion, sustained pain-like behaviors. Osteoclast derived IGF-1 initiates a Schwann cell-dependent neuroinflammatory response that sustains a proalgesic pathway that provides new options for MBCP treatment.


Asunto(s)
Neoplasias Óseas , Dolor en Cáncer , Ratones , Animales , Factor I del Crecimiento Similar a la Insulina/metabolismo , Dolor/metabolismo , Hiperalgesia/metabolismo , Células de Schwann/metabolismo
9.
Br J Pharmacol ; 180(9): 1232-1246, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36494916

RESUMEN

BACKGROUND AND PURPOSE: The pro-algesic transient receptor potential ankyrin 1 (TRPA1) channel, expressed by a subpopulation of primary sensory neurons, has been implicated in various pain models in mice. However, evidence in rats indicates that TRPA1 conveys nociceptive signals elicited by channel activators, but not those associated with tissue inflammation or nerve injury. Here, in rats, we explored the TRPA1 role in mechanical allodynia associated with stimulation of peptidergic primary sensory neurons (neurogenic inflammation) and moderate (partial sciatic nerve ligation, pSNL) or severe (chronic constriction injury, CCI) sciatic nerve injury. EXPERIMENTAL APPROACH: Acute nociception and mechanical hypersensitivity associated with neurogenic inflammation and sciatic nerve injury (pSNL and CCI) were investigated in rats with TRPA1 pharmacological antagonism or genetic silencing. TRPA1 presence and function were analysed in cultured rat Schwann cells. KEY RESULTS: Hind paw mechanical allodynia (HPMA), but not acute nociception, evoked by local injection of capsaicin or allyl isothiocyanate, the TRP vanilloid 1 (TRPV1) or the TRPA1 activators was mediated by CGRP released from peripheral sensory nerve terminals. CGRP-evoked HPMA was sustained by a ROS-dependent TRPA1 activation, probably in Schwann cells. HPMA evoked by pSNL, but not that evoked by CCI, was mediated by ROS and TRPA1 without the involvement of CGRP. CONCLUSIONS AND IMPLICATIONS: As found in mice, TRPA1 mediates mechanical allodynia associated with neurogenic inflammation and moderate nerve injury in rats. The channel contribution to mechanical hypersensitivity is a common feature in rodents and might be explored in humans.


Asunto(s)
Enfermedades del Sistema Nervioso Periférico , Canales de Potencial de Receptor Transitorio , Humanos , Ratas , Ratones , Animales , Hiperalgesia , Canal Catiónico TRPA1 , Inflamación Neurogénica , Péptido Relacionado con Gen de Calcitonina/metabolismo , Especies Reactivas de Oxígeno
10.
J Invest Dermatol ; 143(1): 142-153.e10, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36049541

RESUMEN

Growing evidence indicates that transient receptor potential (TRP) channels contribute to different forms of pruritus. However, the endogenous mediators that cause itch through transient receptor potential channels signaling are poorly understood. In this study, we show that genetic deletion or pharmacological antagonism of TRPV4 attenuated itch in a mouse model of psoriasis induced by topical application of imiquimod. Human psoriatic lesions showed increased expression of several microRNAs, including the miR-203b-3p, which induced a calcium ion response in rodent dorsal root ganglion neurons and scratching behavior in mice through 5-HTR2B activation and the protein kinase C‒dependent phosphorylation of TRPV4. Computer simulation revealed that the miR-203b-3p core sequence (GUUAAGAA) that causes 5-HTR2B/TRPV4-dependent itch targets the extracellular side of 5-HTR2B by interacting with a portion of the receptor pocket consistent with its activation. Overall, we reveal the unconventional pathophysiological role of an extracellular microRNA that can behave as an itch promoter through 5-HTR2B and TRPV4.


Asunto(s)
MicroARNs , Prurito , Receptor de Serotonina 5-HT2B , Canales Catiónicos TRPV , Animales , Humanos , Ratones , Simulación por Computador , Ganglios Espinales , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Prurito/inducido químicamente , Prurito/genética , Prurito/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Receptor de Serotonina 5-HT2B/genética , Receptor de Serotonina 5-HT2B/metabolismo
11.
Cancers (Basel) ; 14(23)2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36497441

RESUMEN

Although it is a disease that occurs mainly in the Caucasian population, uveal melanoma (UM) is the most common primary intraocular tumor in adults. Here, we used digital pathology and image analysis for the diagnosis of UM and the prediction of the prognosis. Our retrospective study included a total of 404 histopathological slides from 101 patients. A digital image acquisition and quantitative analysis of tissue immune biomarkers (CD4, CD8, CD68, CD163) were performed. A negative impact of the intratumoral CD8 positive cell density higher than 13.3 cells/mm2 was detected for both RFS (HR 2.08, 95% Cl 1.09 to 3.99, p = 0.027) and OS (HR 3.30, 95% CI 1.58 to 6.88, p = 0.001). Moreover, we confirmed that older age and stage III were independent negative prognostic factors for both RFS and OS. Our results suggest that a specific distribution profile of CD8 in UM might predict the risk of relapse and death, with potential implications for determining which subgroups of UMs are amenable to specific pharmacological treatment regimens.

12.
Int J Mol Sci ; 23(15)2022 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-35897758

RESUMEN

Vision is an important sense for humans, and visual impairment/blindness has a huge impact in daily life. The retina is a nervous tissue that is essential for visual processing since it possesses light sensors (photoreceptors) and performs a pre-processing of visual information. Thus, retinal cell dysfunction or degeneration affects visual ability and several general aspects of the day-to-day of a person's lives. The retina has a blood-retinal barrier, which protects the tissue from a wide range of molecules or microorganisms. However, several agents, coming from systemic pathways, reach the retina and influence its function and survival. Pesticides are still used worldwide for agriculture, contaminating food with substances that could reach the retina. Natural products have also been used for therapeutic purposes and are another group of substances that can get to the retina. Finally, a wide number of medicines administered for different diseases can also affect the retina. The present review aimed to gather recent information about the hazard of these products to the retina, which could be used to encourage the search for more healthy, suitable, or less risky agents.


Asunto(s)
Retina , Degeneración Retiniana , Barrera Hematorretinal , Humanos , Células Fotorreceptoras , Retina/metabolismo , Degeneración Retiniana/metabolismo , Visión Ocular , Percepción Visual
13.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35562920

RESUMEN

The transient receptor potential ankyrin 1 (TRPA1), a member of the TRP superfamily of channels, is primarily localized in a subpopulation of primary sensory neurons of the trigeminal, vagal, and dorsal root ganglia, where its activation mediates neurogenic inflammatory responses. TRPA1 expression in resident tissue cells, inflammatory, and immune cells, through the indirect modulation of a large series of intracellular pathways, orchestrates a range of cellular processes, such as cytokine production, cell differentiation, and cytotoxicity. Therefore, the TRPA1 pathway has been proposed as a protective mechanism to detect and respond to harmful agents in various pathological conditions, including several inflammatory diseases. Specific attention has been paid to TRPA1 contribution to the transition of inflammation and immune responses from an early defensive response to a chronic pathological condition. In this view, TRPA1 antagonists may be regarded as beneficial tools for the treatment of inflammatory conditions.


Asunto(s)
Canales de Potencial de Receptor Transitorio , Canales de Calcio/metabolismo , Proteínas del Citoesqueleto/metabolismo , Ganglios Espinales/metabolismo , Canal Catiónico TRPA1/metabolismo , Canales Catiónicos TRPV , Canales de Potencial de Receptor Transitorio/metabolismo
14.
Appl Immunohistochem Mol Morphol ; 30(4): 311-316, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35384882

RESUMEN

Histopathologic examination of highly pigmented melanoma tissues has always been a challenge for pathologists. The high concentration of melanin pigment is an obstacle for immunohistochemistry and the ensuing evaluation. Therefore, removing melanin has become a crucial step for processing heavily pigmented melanoma samples. Several bleaching techniques have been proposed in the past, however, the most commonly used methods are time-consuming and poorly standardized. In this study, we propose a new fast and fully automated bleaching method applicable to validated immunohistochemical panels already used in the diagnosis of melanocytic tumors. The proposed bleaching protocol is based on sample pretreatment with 0.5% hydrogen peroxide and a Tris base pH 10 solution for 8 minutes at 80°C before antigen retrieval. Immunohistochemistry with HMB45, MART-1, Ki-67, SOX10, S-100, Tyrosinase, and BRAF(V600E) antibodies showed that this pretreatment removed excess melanin without affecting the tissue antigenicity and cytoarchitecture. In conclusion, we propose a new fast and automated bleaching protocol, easily transferable to a routine setting with efficient results in specimens in which the melanin pigmentation could blunt the histopathologic examination.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Anticuerpos Monoclonales , Humanos , Inmunohistoquímica , Melaninas , Melanoma/diagnóstico , Melanoma/patología , Neoplasias Cutáneas/patología
15.
Pathol Oncol Res ; 28: 1610237, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35295613

RESUMEN

Undifferentiated round cell sarcomas (URCS) of soft tissue and bone and tumours of uncertain differentiation (TUD) are commonly ascribed to a subset of neoplasms with low frequency of NTRK gene fusions. However, more recently NTRK-rearranged round and spindle cell tumours have been noted in case reports and in limited or heterogeneous cohorts. The aim of our study was to investigate the presence of NTRK gene fusions in a large retrospective cohort of paediatric URCS and TUD after a systematic review of the diagnosis, according to the recently updated WHO classification scheme. One-hundred and five patients with diagnosis of URCS or TUD, involving the bone or soft tissue, were retrospectively evaluated. After the case selection and the histopathological review of the case cohort, pan-Trk immunohistochemistry (IHC) testing was performed on formalin-fixed paraffin-embedded (FFPE) tissues. Tumour RNA was extracted from FFPE tissue and subjected to next-generation sequencing (NGS) library preparation, using a 10-gene NGS fusion panel, sequenced on an Illumina MiSeq. The NGS-positive cases were further confirmed by real-time PCR. On immunohistochemical screening, 12/105 (11.4%) cases were positive using the pan-Trk antibody, showing three different staining patterns with the cytoplasmic distribution being most common. Molecular analysis using NGS and confirmed by the real-rime PCR detected two positive cases for the ETV6-NTRK3 fusion. The histological pattern of the two positive cases, together with the demonstration of the NTRK rearrangement, leaded to re-classify these previously not otherwise specified sarcomas with uncertain differentiation into the emerging category of NTRK-rearranged neoplasms. In addition, we found the two NTRK fused neoplasms showing a clinical indolent course, in contrast with literature.


Asunto(s)
Receptor trkA , Sarcoma , Niño , Fusión Génica , Humanos , Inmunohistoquímica , Receptor trkA/genética , Estudios Retrospectivos , Sarcoma/genética , Sarcoma/patología
16.
J Transl Med ; 20(1): 118, 2022 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-35272691

RESUMEN

BACKGROUND: Nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in nicotinamide adenine dinucleotide (NAD) biosynthesis, is up-regulated in several cancers, including metastatic melanoma (MM). The BRAF oncogene is mutated in different cancer types, among which MM and thyroid carcinoma (THCA) are prominent. Drugs targeting mutant BRAF are effective, especially in MM patients, even though resistance rapidly develops. Previous data have linked NAMPT over-expression to the acquisition of BRAF resistance, paving the way for therapeutic strategies targeting the two pathways. METHODS: Exploiting the TCGA database and a collection of MM and THCA tissue microarrays we studied the association between BRAF mutations and NAMPT expression. BRAF wild-type (wt) cell lines were genetically engineered to over-express the BRAF V600E construct to demonstrate a direct relationship between over-activation of the BRAF pathway and NAMPT expression. Responses of different cell line models to NAMPT (i)nhibitors were studied using dose-response proliferation assays. Analysis of NAMPT copy number variation was performed in the TCGA dataset. Lastly, growth and colony forming assays were used to study the tumorigenic functions of NAMPT itself. RESULTS: The first finding of this work is that tumor samples carrying BRAF-mutations over-express NAMPT, as demonstrated by analyzing the TCGA dataset, and MM and THC tissue microarrays. Importantly, BRAF wt MM and THCA cell lines modified to over-express the BRAF V600E construct up-regulated NAMPT, confirming a transcriptional regulation of NAMPT following BRAF oncogenic signaling activation. Treatment of BRAF-mutated cell lines with two different NAMPTi was followed by significant reduction of tumor growth, indicating NAMPT addiction in these cells. Lastly, we found that several tumors over-expressing the enzyme, display NAMPT gene amplification. Over-expression of NAMPT in BRAF wt MM cell line and in fibroblasts resulted in increased growth capacity, arguing in favor of oncogenic properties of NAMPT. CONCLUSIONS: Overall, the association between BRAF mutations and NAMPT expression identifies a subset of tumors more sensitive to NAMPT inhibition opening the way for novel combination therapies including NAMPTi with BRAFi/MEKi, to postpone and/or overcome drug resistance. Lastly, the over-expression of NAMPT in several tumors could be a key and broad event in tumorigenesis, substantiated by the finding of NAMPT gene amplification.


Asunto(s)
Melanoma , Proteínas Proto-Oncogénicas B-raf , Carcinogénesis/genética , Línea Celular Tumoral , Variaciones en el Número de Copia de ADN , Humanos , Melanoma/patología , Mutación/genética , Nicotinamida Fosforribosiltransferasa/genética , Nicotinamida Fosforribosiltransferasa/metabolismo , Oncogenes , Proteínas Proto-Oncogénicas B-raf/genética
17.
Nat Commun ; 13(1): 646, 2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35115501

RESUMEN

Efficacy of monoclonal antibodies against calcitonin gene-related peptide (CGRP) or its receptor (calcitonin receptor-like receptor/receptor activity modifying protein-1, CLR/RAMP1) implicates peripherally-released CGRP in migraine pain. However, the site and mechanism of CGRP-evoked peripheral pain remain unclear. By cell-selective RAMP1 gene deletion, we reveal that CGRP released from mouse cutaneous trigeminal fibers targets CLR/RAMP1 on surrounding Schwann cells to evoke periorbital mechanical allodynia. CLR/RAMP1 activation in human and mouse Schwann cells generates long-lasting signals from endosomes that evoke cAMP-dependent formation of NO. NO, by gating Schwann cell transient receptor potential ankyrin 1 (TRPA1), releases ROS, which in a feed-forward manner sustain allodynia via nociceptor TRPA1. When encapsulated into nanoparticles that release cargo in acidified endosomes, a CLR/RAMP1 antagonist provides superior inhibition of CGRP signaling and allodynia in mice. Our data suggest that the CGRP-mediated neuronal/Schwann cell pathway mediates allodynia associated with neurogenic inflammation, contributing to the algesic action of CGRP in mice.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina/metabolismo , Endosomas/metabolismo , Hiperalgesia/fisiopatología , Células de Schwann/metabolismo , Transducción de Señal/fisiología , Animales , Proteína Similar al Receptor de Calcitonina/genética , Proteína Similar al Receptor de Calcitonina/metabolismo , Células Cultivadas , Femenino , Células HEK293 , Humanos , Hiperalgesia/diagnóstico , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Persona de Mediana Edad , Neuronas/metabolismo , Óxido Nítrico/metabolismo , Proteína 1 Modificadora de la Actividad de Receptores/genética , Proteína 1 Modificadora de la Actividad de Receptores/metabolismo , Canal Catiónico TRPA1/genética , Canal Catiónico TRPA1/metabolismo
18.
Pain ; 163(7): 1346-1355, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34711761

RESUMEN

ABSTRACT: Primary headache conditions are frequently associated with multiple sclerosis (MS), but the mechanism that triggers or worsens headaches in patients with MS is poorly understood. We previously showed that the proalgesic transient receptor potential ankyrin 1 (TRPA1) mediates hind paw mechanical and cold allodynia in a relapsing-remitting experimental autoimmune encephalomyelitis (RR-EAE) model in mice. Here, we investigated the development of periorbital mechanical allodynia (PMA) in RR-EAE, a hallmark of headache, and if TRPA1 contributed to this response. RR-EAE induction by injection of the myelin oligodendrocyte peptide fragment35-55 (MOG35-55) and Quillaja A adjuvant (Quil A) in C57BL/6J female mice elicited a delayed and sustained PMA. The PMA at day 35 after induction was reduced by the calcitonin gene-related peptide receptor antagonist (olcegepant) and the serotonin 5-HT1B/D receptor agonist (sumatriptan), 2 known antimigraine agents. Genetic deletion or pharmacological blockade of TRPA1 attenuated PMA associated with RR-EAE. The levels of oxidative stress biomarkers (4-hydroxynonenal and hydrogen peroxide, known TRPA1 endogenous agonists) and superoxide dismutase and NADPH oxidase activities were increased in the trigeminal ganglion of RR-EAE mice. Besides, the treatment with antioxidants (apocynin or α-lipoic acid) attenuated PMA. Thus, the results of this study indicate that TRPA1, presumably activated by endogenous agonists, evokes PMA in a mouse model of relapsing-remitting MS.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Esclerosis Múltiple Recurrente-Remitente , Esclerosis Múltiple , Animales , Ancirinas , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/complicaciones , Femenino , Cefalea/complicaciones , Hiperalgesia/complicaciones , Hiperalgesia/etiología , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/complicaciones , Esclerosis Múltiple Recurrente-Remitente/complicaciones , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Canal Catiónico TRPA1/genética
19.
J Am Acad Dermatol ; 87(4): 761-770, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-34265409

RESUMEN

BACKGROUND: Eosinophilic dermatosis of hematologic malignancy (EDHM) is a rare dermatosis associated with blood tumors. OBJECTIVE: To characterize the expression of T-cell and B-cell markers and pruritogenic mediators in EDHM skin. METHODS: Immunohistochemical and immunofluorescence analysis were performed in 12 skin samples of EDHM, 11 samples of bullous pemphigoid (BP), and 5 samples from healthy controls (HC). Serum levels of interleukin (IL) 4 were analyzed in 11 patients with EDHM, 11 BP patients, and 5 HC by enzyme-linked immunosorbent assay. RESULTS: T-cell markers, including clusters of differentiation (CD) 3, CD4, CD8, and CD5 were significantly overexpressed in EDHM and BP skin compared to HC. A predominance of CD4+ over CD8+ cells and GATA3+ (helper T cell type 2 [Th2] marker) over T-bet+ (Th1 marker) cells were observed. FOXP3 expression was increased but the FOXP3/CD4 ratio was low. B-cell markers were under-represented, without significant differences between the 3 groups. IL-4 and IL-31 were significantly overexpressed in EDHM and BP compared to HC and colocalized with the Th2-associated marker GATA3. Eotaxin-1 was significantly overexpressed in EDHM compared to BP and HC. IL-4 serum concentration was significantly increased in EDHM and BP compared to HC. LIMITATIONS: Small sample size; retrospective design. CONCLUSIONS: Targeting Th2-related molecules, in particular IL-4, holds promise for EDHM management.


Asunto(s)
Neoplasias Hematológicas , Penfigoide Ampolloso , Quimiocina CCL11 , Factores de Transcripción Forkhead , Neoplasias Hematológicas/complicaciones , Humanos , Interleucina-4 , Interleucinas , Penfigoide Ampolloso/patología , Estudios Retrospectivos , Linfocitos T Colaboradores-Inductores , Células Th2
20.
Neurosci Lett ; 768: 136380, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34861342

RESUMEN

Migraine afflicts more than 10% of the general population. Although its mechanism is poorly understood, recent preclinical and clinical evidence has identified calcitonin gene related peptide (CGRP) as a major mediator of migraine pain. CGRP, which is predominantly expressed in a subset of primary sensory neurons, including trigeminal afferents, when released from peripheral terminals of nociceptors, elicits arteriolar vasodilation and mechanical allodynia, a hallmark of migraine attack. Transient receptor potential (TRP) channels include several cationic channels with pleiotropic functions and ubiquitous distribution in various cells and tissues. Some members of the TRP channel family, such as the ankyrin 1 (TRPA1), vanilloid 1 and 4 (TRPV1 and TRPV4, respectively), and TRPM3, are abundantly expressed in primary sensory neurons and are recognized as sensors of chemical-, heat- and mechanical-induced pain, and play a primary role in several models of pain diseases, including inflammatory, neuropathic cancer pain, and migraine pain. In addition, TRP channel stimulation results in CGRP release, which can be activated or sensitized by various endogenous and exogenous stimuli, some of which have been proven to trigger or worsen migraine attacks. Moreover, some antimigraine medications seem to act through TRPA1 antagonism. Here we review the preclinical and clinical evidence that highlights the role of TRP channels, and mainly TRPA1, in migraine pathophysiology and may be proposed as new targets for its treatment.


Asunto(s)
Trastornos Migrañosos/metabolismo , Trastornos Migrañosos/fisiopatología , Canales de Potencial de Receptor Transitorio/metabolismo , Animales , Cefalea/metabolismo , Cefalea/fisiopatología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...